If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-50+5x+34=180
We move all terms to the left:
x^2-50+5x+34-(180)=0
We add all the numbers together, and all the variables
x^2+5x-196=0
a = 1; b = 5; c = -196;
Δ = b2-4ac
Δ = 52-4·1·(-196)
Δ = 809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{809}}{2*1}=\frac{-5-\sqrt{809}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{809}}{2*1}=\frac{-5+\sqrt{809}}{2} $
| -7x-3(-x+18)=-102 | | 8k-7(k-2)=9 | | x−6(x−5)=2x+4(x−20) | | (4x-40)°=(x+50)° | | 34x+1=137 | | 3*d-8=13 | | 8+3s=4s+4 | | 3w-73=1/4(52-12w) | | C=0.756x+0.06(0.765 | | f(4)=-5,f(-4) | | 3x-2x+5=2x+2 | | j/8−4=2 | | -k/6=6 | | 2+5x-5=-x-2 | | 12.96+0.06x=13.71-0.08x | | 2(-6r+2)=100 | | -5(x-9)=5 | | -5x=46 | | 58=-9m-23 | | 5=(2)(2)=b | | -19s+10s+6s=6 | | -7=-1-3a | | 6a-14=-7+6a | | b/8+48=55 | | 6x-3(x+13)=-54 | | 3^x=27/11 | | (13x-21+)+(5x+75)=180 | | 1/4x-3=−1 | | -1/4(14-16x)=4x-5 | | 70=r/7+63 | | 1/3(y–6)=2y–3 | | 4x+3+3x+2= |